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We present a computational algorithm for fully resolved numerical simulation (FRS) of
rigid and deforming bodies moving in fluids. Given the deformation of the body in its
own reference frame, the method solves for the swimming velocity of the body together
with the surrounding flow field, and the hydrodynamic forces on the body. We provide
the mathematical foundation of the algorithm based on distributed Lagrange multipliers,
and show that it naturally connects with vortex methods through a vorticity source at
the interface. We demonstrate applications to rigid and flexible bodies, membranes, and
bodies with a propelling membrane attached to them. In contrast to some existing meth-
ods, the swimming velocity of the body is not prescribed but is computed along with the
forces, without requiring a body-fitted grid. The algorithm is designed to be fast, efficient,
and easy to implement in existing fluid dynamics codes for practical solid–fluid problems
in engineering and biology.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Swimming fish are a biological model system for understanding the interconnections between mechanics, physiology and
neuronal activity during locomotion. Musculoskeletal, neuronal, and sensory systems interact closely with each other result-
ing in the complex process of locomotion [1–3]. To gain insights into biolocomotion, a desirable approach is to use reduced
order models for such multiple systems in an integrative setting to allow the study of how each function performs coherently
along with the others. The empirical data or numerical simulations required for development and validation of reduced order
models can become complex and expensive due to the detailed mechanics and neural function of the organism. In particular,
the hydrodynamics of aquatic locomotion involves multiple phenomena such as viscous effects, boundary layer separation
and vortex shedding which require elaborate measurements or computations to characterize sufficiently. Perhaps due to this
complexity, many unanswered questions still remain, such as (i) how can the swimming velocity of an organism be deter-
mined from the movement of its propulsive surfaces? (ii) What is the efficiency of various modes of swimming? (iii) What
are the wake signatures of the various modes of swimming, and are they indicative of the swimming efficiency?

A standard reduced order model approach relies on equating a priori estimates of drag and thrust on a fish at its swimming
velocity. This has led to many conflicting results. For instance, for a given swimming velocity, the drag on swimming fish is
often estimated to be higher than that found in towing experiments [4,5]. However, there are also measurements on an ac-
tively swimming robotic vehicle which show that the power needed to self-propel the robot is reduced by half compared to
the power needed to tow the robot with the body straight and rigid [6]. Regarding the thrust at a given swimming speed,
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Lighthill’s theory [5,7,8] is found to over predict thrust by a factor of up to 3. One of the root causes of the conflicting results on
the drag and thrust on swimming fish is that in the case of self-propulsion, drag and thrust cannot be properly separated [4,9].
There is no net time-averaged hydrodynamic force acting on the surface of the fish during steady swimming. One may arti-
ficially split the net hydrodynamic force into two parts – thrust and drag. However, locations where thrust and drag are gen-
erated on the fish body can be intermingled [10]. Thus, there is no general way to a priori separate and predict both thrust and
drag. This implies that the approach of balancing thrust and drag to obtain the swimming velocity is unsuitable. Fully resolved
simulation (FRS) of self-propulsion is useful in this case to obtain the swimming velocity and at the same time obtain the force
distribution on the surface of the fish. In our discussion, fully resolved simulation implies that the fluid–solid coupling is not
modeled (e.g. using drag models) but instead the flow around the swimming body is fully resolved.

The separation of thrust and drag also produces difficulties in coming up with a consistent definition of swimming efficiency.
Swimming efficiency is often given in terms of the Froude efficiency, which is defined as the ratio of work done by the thrust
force to the total power input. Once again defining thrust is not straightforward when thrust and drag are intermingled as dis-
cussed above. As a result, there is no clear understanding of the comparative efficiency of the different swimming modes [4,10].
FRS of self-propulsion can provide the net mechanical energy cost of swimming and lead to useful efficiency measures such as
those used by Kern and Koumoutsakos [11] to compare swimming efficiency across various swimming styles.

Usually, strong downstream flow in the wake is interpreted to signify thrust as well as energy lost in the wake [4,12–15].
However, the wake of steadily swimming eels is found to lack substantial downstream flow [10]. This raises a fundamental
question: what is the signature of thrust in wakes of various swimming modes, and how is it correlated with swimming effi-
ciency? Tytell and Lauder [10] speculate that wakes probably show a gradation from those of mackerel, for example, which
primarily flap their caudal fins, to those of eels, which deform their entire body. The wake could thus be indicative of the
propulsion mechanism which can be studied by FRS of self-propulsion. Such simulations will also make it possible to find
swimming gaits that minimize wakes but are also efficient.

Each of the above issues could be addressed by sophisticated experimental techniques or through FRS schemes. Often
experimental techniques are intrusive, making measurements in the natural state of the system difficult, especially when
force measurements are involved [16]. Hence high-fidelity numerical simulations can greatly contribute to the study of
the fluid dynamics of biolocomotion, leading to better predictive models for the motion of a variety of organisms.

Modeling the hydrodynamics of moving organisms can be challenging due to the strong coupling between the body and
the surrounding fluid, which are governed by widely separate material characteristics such as stiffness and viscosity. To
model this, there are two approaches of interest. In the first approach, referred to as the elastohydrodynamic approach,
the muscle activation would be given. Then, the elastic equations for the body would be solved together with the equations
of motion of the body and the fluid. This approach will require detailed knowledge of muscle anatomy, physiology, and mus-
cle activation patterns, as well as the elastic properties of the fish body and fins. This requirement is far beyond what is
understood for the best characterized systems, and is an open area of research. Currently, such approaches rely on simpli-
fications of the elastic and hydrodynamic equations [17,18].

The second approach, referred to as the hydrodynamic approach, is to find the swimming velocity resulting from a given
deforming motion (kinematics) of the body and/or fins. This is a purely hydrodynamic problem that excludes the need to
solve elasticity equations. Typical theories in aquatic locomotion fall into this category. These theories assume that rhythmic
or non-rhythmic deformation kinematics are given based on experimental motion capture data. The hydrodynamic approach
does not ignore the net elastic effect. It is embedded in the body deformation kinematics, within the accuracy with which the
3D kinematic data was obtained. As more high-precision 3D kinematics data of aquatic organisms becomes available (e.g.
[19,20]), the hydrodynamic approach can use it to obtain high-accuracy predictions of their flow field and swimming veloc-
ities. Here, we provide an algorithm for simulating free-swimming organisms using the hydrodynamic approach.

Some of the prior FRS studies involve simulating the flow around deforming organisms at a specified constant swimming
velocity (e.g. [21–25]). These simulations provide valuable insight into the fluid mechanics of aquatic locomotion, but are
limited by the assumption of constant specified swimming velocity. Computations based on this assumption miss two crucial
phenomena occurring in real free-swimming organisms. First, the swimming velocity is seldom constant, but almost always
oscillatory with a constant mean value in the steady swimming state. Second, these temporal changes in the swimming
velocity are likely to affect the flow characteristics around the body both qualitatively and quantitatively. To include these
details, FRS should also solve for the swimming velocity instead of taking it is as an input. This will account for the two-way
coupling between the flow field around the body and its swimming velocity.

There are FRS studies that present simulations of self-propelling organisms, i.e. they do not specify the swimming velocity
but obtain it as a solution. These studies include a self-propelling eel [27,11], a flagellar structure with a head [28], and a
copepod [23]. In these approaches, typically, the flow field is advanced first and then additional equations of motion for
the body are solved based on the hydrodynamic force on the body. This explicit coupling can cause numerical instability
due to the non-linear nature of the fluid dynamics equations and the angular momentum equation for the body [29].

Kern and Koumoutsakos [11] recently performed FRS of self-propelling eels with detailed body geometry and reproduced
flow features observed in experiments of Tytell and Lauder [10]. In their work the geometric detail was made possible using a
body-fitted grid. A body-fitted grid has to be regenerated periodically in order to conform to the changing configuration of
the eel body. Body-fitted grid methods are difficult to apply to problems with arbitrarily shaped complex objects and mul-
tibody configurations. This is because in these cases, grid regeneration can significantly add to the computational cost. Addi-
tionally, fluid solvers are based on either unstructured or curvilinear structured grids, both of which can be computationally
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expensive compared to fast solvers for fixed structured rectilinear grids. Good scalability is also challenging in parallel imple-
mentations that are often essential to solve high Reynolds number problems. This is known from prior work on fully resolved
simulation of rigid particulate flows where body-fitted grid methods were found to be computationally expensive compared
to immersed boundary method-based fixed grid techniques [29,30].

Vortex particle methods provide an alternative to curvilinear grids, and simulation of geometrically simple self-propelling
objects have been carried out using these methods [26,31]. For complex configurations, however, the vortex elements need
remeshing.

Motivated by the requirement of being able to efficiently handle arbitrarily shaped swimming bodies, we present a con-
straint-based formulation for the problem of self-propulsion. Then we present an efficient algorithm to solve the new set of
governing equations. The new formulation and the algorithm provide a rigorous basis for an immersed boundary implemen-
tation of the self-propulsion problem. It allows implicit coupling between the fluid and the fish body without the need to
solve additional equations of motion for the fish body. Thus, the new approach addresses several of the computational chal-
lenges discussed above. The proposed technique can also easily handle multiple bodies and deformation patterns. The algo-
rithm extends the approach for rigid particulate flows by Patankar et al. [32] and Patankar [33] to self-propulsion of
deforming bodies [34,35].

In the following, Section 2 gives the mathematical formulation. Section 3 presents the algorithm and its implementation.
Section 4 demonstrates the application of the algorithm for rigid and flexible membranes, rigid and flexible bodies, and a self-
propelling black ghost knifefish as an example of a rigid body with an attached flexible fin. Section 5 gives concluding remarks.
2. Mathematical formulation

We present a mathematical formulation for an algorithm applicable to a class of problems which can have a solid body
(flexible or rigid) moving in a fluid either by the fluid motion (passive) or by self-propulsion (active), or some combination of
the two. In the case of a flexible body, it is assumed that its deformation is specified. The objective is to obtain the flow field
around the body, the swimming velocity of the body, and the forces on the body. For self-propulsion, the body is either flex-
ible so that it can generate an undulatory motion or has a flexible membrane attached to it to generate such motion. An
example of the former is an eel, while knifefish—which swim by undulating a long midine fin while keeping the body
straight—is an example of the latter. All undulatory motion of the body and the membrane are assumed to be given, such
as through 3D kinematics measurements. In the hydrodynamic approach, the kinematics can also be obtained separately
by carrying out an a priori, independent calculation of velocity using an elastic response model of the body when the mus-
cular forces are given, without considering the fluid mechanics. The hydrodynamic approach will always take the kinematics
of deformation as the input. Thus, the source of this kinematic data can be direct velocity measurements or a separate elastic
model, depending on whether the forces or the velocity of the organism are available from measurements.

We consider a generic ‘‘organism” consisting of a ‘‘body” domain Xs. The total computational domain, X, includes Xs and
the fluid domain Xf ¼ ðX�XsÞ. The boundary of X is @X, and that of Xs is @Xs. Although we consider a single immersed body
for convenience, the formulation and the algorithm are easily extendable to multiple bodies, i.e. when Xs is not simply con-
nected. The gravitational body force will be ignored in the following for simplicity of exposition. However, if gravity is present
then a body force term can be added to the momentum equation. The fluid domain is governed by the momentum equation,
qf
@u
@t
þ u � ru

� �
¼ r � r in Xf ; ð2:1Þ
the continuity equation,
r � u ¼ 0 in Xf ; ð2:2Þ
the boundary condition,
u ¼ u@X on @X; ð2:3Þ
the interface conditions on the fluid–solid boundary,
u ¼ ui and r � n̂ ¼ t@Xs on @Xs; ð2:4Þ
and the initial condition,
uðx; t ¼ 0Þ ¼ uoðxÞ in Xf ðt ¼ 0Þ: ð2:5Þ
Here qf and u are the fluid density and velocity, n̂ is the outward normal unit vector to @Xs, outward being away from the
body, and r is the stress tensor inside the fluid. t@Xs is the traction vector acting from the fluid on the solid body surface. ui is
the (unknown) velocity of the solid–fluid interface. The initial velocity uo is required to satisfy Eq. (2.2) and the boundary
velocity in Eq. (2.3) should satisfy the compatibility condition due to Eq. (2.2) at all times. The Dirichlet boundary condition
(2.3) is used on the external boundary, but the formulation can be easily extended to consider other boundary conditions.
The fluid equations (2.1)–(2.5) should be solved coupled with the equations of motion of the solid. The fluid and solid equa-
tions are coupled through the interface conditions in Eq. (2.4).



A.A. Shirgaonkar et al. / Journal of Computational Physics 228 (2009) 2366–2390 2369
For an incompressible flow, r ¼ �pI þ s, where p is the mechanical pressure and s is the deviatoric stress tensor. p can be
regarded as a Lagrange multiplier associated with the incompressibility constraint [36, p. 472]. For an incompressible New-
tonian fluid with viscosity l; s ¼ 2lDðuÞ, where DðuÞ ¼ 1

2 ðruþruTÞ is the deformation rate tensor. For a viscoelastic fluid, s
is constituted by both the viscous and elastic stresses in the fluid.

The motion of the material inside the solid domain is governed by momentum balance. For an elastic solid, the momen-
tum equation is expressed as the Navier equation [37, p. 73]. This is called the elastohydrodynamic approach. When the solid
is stiff relative to the fluid, i.e. its elastic and/or viscoelastic moduli are high, the coupled solution becomes stiff. This may
cause instability, inaccuracy, or excessive inefficiency in numerical solutions of the equations. However, when the deforma-
tion velocity of the body is specified, which we referred to as the hydrodynamic approach earlier, a different problem can be
formulated. In this case it is more desirable to consider the solid as a fluid with an additional constraint associated with the
specified deformation velocity field within the body. We will formulate this approach below. It is noted that when the body
has no deformations, i.e. it is rigid, the approach below reduces to that developed previously for rigid particulate flows
[30,32].

Considering the solid as a fluid, the governing equations at each point within the body are the momentum equation,
qs
@u
@t
þ u � ru

� �
¼ r � rs in Xs; ð2:6Þ
the continuity equation,
r � u ¼ 0 in Xs; ð2:7Þ
a constraint for the rigid component of motion,
Dðu� uf Þ ¼
1
2
½rðu� uf Þ þ rðu� uf ÞT � ¼ 0 in Xs; ð2:8Þ
the interface conditions on the fluid–solid boundary,
u ¼ ui and rs � n̂ ¼ t@Xs on @Xs; ð2:9Þ
and the initial condition,
uðx; t ¼ 0Þ ¼ uoðxÞ in Xsðt ¼ 0Þ; ð2:10Þ
where qs is the solid density, rs is the stress tensor, and uf is the given deformation velocity field of the body in its own frame
of reference. We have not yet committed to any specific form for rs within the solid. We will subsequently see that it will be
composed of the pressure due to the continuity constraint and a Lagrange multiplier stress field due to the constraint (2.8) on
the rigid component of motion.

Constraint (2.8) arises as follows. We decompose the solid velocity as u ¼ ur þ uf where ur is the rigid motion of the body,
and uf is the deforming motion of the body in its own reference frame. uf can represent undulations of a membrane (e.g.
pectoral fins), or the organism’s body (e.g. eel). It can also be a combination of motion of the body and the appendages.
An example of this is found in sharks, where the piston-like motion of the muscles running along the spinal cord produces
body waves, and the fins provide additional maneuverability. The specified deformation kinematics uf are the only motion
input required by this formulation. The translational and rotational swimming velocities of the body, which form its rigid
motion ur , are obtained as a solution. The constraint (2.8) follows from the requirement that the deformation rate tensor
associated with the rigid motion component ur is zero in Xs.

Before proceeding, some remarks are in order regarding uf . The organism’s own frame of reference is arbitrary in the
sense that it depends on the exact form of uf . For cyclic motion, this means that the reference frame is chosen so that the
deformation kinematics closely approximate the animal’s body deformation in a frame moving with the animal’s average
swimming velocity over one propulsive cycle. However, all the mathematical details generalize to non-cyclic motions, such
as those used for rapid maneuvers.

To illustrate this clearly, we take the example of the gymnotiform mode of swimming. The gymnotiform mode refers to
swimming by means of a long (approximately 3/4ths of the body length) baseline fin that is attached along the ventral mid-
line of the body, while keeping the body straight [38]. An example is the cruising motion of the South American weakly elec-
tric black ghost knifefish Apteronotus albifrons (Fig. 1). A reasonable approximation for the cruising mode is that the body
moves rigidly with all deformations restricted to the fin. In this case the organism’s frame of reference is fixed to three fixed,
non-collinear points on its body. The fin undulates in this frame. In general the organism’s reference frame is different from
the reference frame attached to its center of mass. The former changes in time consistent with the definition of uf .

We note that Eq. (2.8) can be cast into the form [32]:
r � Dðu� uf Þ ¼ 0 in Xs;

Dðu� uf Þ � n̂ ¼ 0 on @Xs:
ð2:11Þ
This constraint gives rise to a distributed Lagrange multiplier stress field in the momentum equation (2.6). This is similar to
how there is mechanical pressure in the momentum equation of an incompressible fluid due to the divergence-free con-



Fig. 1. Bottom view of a black ghost knifefish, Apteronotus albifrons, during steady swimming. Body deformations are small compared to fin deformations
during steady swimming.
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straint on velocity. Next, we present the formal variational formulation that leads to the distributed Lagrange multiplier cor-
responding to the motion constraints.

2.1. Variational formulation and distributed Lagrange multipliers

In the momentum transport equations for multi-component systems, all materials can be treated as a fluid with their
respective material properties such as moduli of compressibility, viscosity, and thermal properties such as heat conductivity
and speed of sound. This idea has been utilized to consolidate the compressible and incompressible equations for shallow
geophysical flows into a single formulation [39]. However, in the limit of incompressibility, due to the infinite speed of sound
in the material, the compressible equations become stiff. In such a case it is desirable to introduce mechanical pressure as a
Lagrange multiplier corresponding to the incompressibility constraint. Much in the same spirit, perfectly rigid solids can be
considered as a limit of fluids with infinite viscosity and compressibility, and a prior formulation [32,33,40] successfully ad-
dresses the resultant stiffness by introducing the rigidity constraint on the velocity inside the solid using a stress field. Since
the viscosity is effectively infinite, the deformation rate tensor must be zero for the stress field to remain well behaved, as
ensured by the Lagrange multiplier identified in the weak formulation of Patankar et al. [32].

To extend these ideas, we follow Patankar et al. [32], but now with specified body deformations. First we will review how
mechanical pressure is introduced as a Lagrange multiplier corresponding to the divergence-free velocity constraint. Then,
we will analogously identify the Lagrange multiplier term corresponding to the constraint in Eq. (2.8).

For the fluid domain, first we impose the divergence-free constraint on the solution and the variation spaces of velocity.
These spaces also satisfy the boundary conditions on velocity. These are specified to be subsets of the Sobolev space H1ðXf Þ3,
so that both the functions and their first derivatives have finite L2-norms:
Vu;dðtÞ ¼ fuju 2 H1ðXf Þ3; r � u ¼ 0 in Xf ; u ¼ u@X on @Xg; ð2:12Þ
Vo;dðtÞ ¼ fdujdu 2 H1ðXf Þ3; r � du ¼ 0 in Xf ; du ¼ 0 on @Xg; ð2:13Þ
where du are the virtual variations of velocity and the subscript ‘‘d” denotes the divergence-free constraint. The weak form of
Eqs. (2.1)–(2.5) in the fluid domain Xf can be written by using the principal of virtual work:
Z

Xf

qf
@u
@t
þ u � ru

� �
� dudx�

Z
Xf

r � ðr � duÞdxþ
Z

Xf

s : DðduÞdx ¼ 0 8du 2 Vo;d: ð2:14Þ
Recall that r and s are the total and deviatoric stress tensors in the fluid, related by r ¼ �pI þ s. The second term on the left
hand side is the total work done on the fluid which is the same as the work done on the entire domain by the boundary trac-
tion, as becomes clear from the Gauss theorem:
Z

Xf

r � ðr � duÞdx ¼
Z
@X

t@X � dudx�
Z
@Xs

t@Xs � dudx; ð2:15Þ
where t@Xs is the traction force vector acting on the solid from the fluid at the interface @Xs, and t@X is the traction acting on
the fluid at @X. The first term on the right hand side of Eq. (2.15) is zero because du is zero on @X. The third term on the left
hand side of Eq. (2.14) is the dissipation term. Now we relax the divergence-free constraint on the velocity spaces and im-
pose it through a Lagrange multiplier p. The constraint term in the functional space (i.e. the contribution from the constraint
to the Lagrangian of motion) is the integral of pr � u over the fluid domain. The weak form (2.14) is modified by adding the
variation of this term as
Z

Xf

qf
@u
@t
þ u � ru

� �
� dudxþ

Z
@Xs

t@Xs � dudxþ
Z

Xf

s : DðduÞdx�
Z

Xf

pr � dudx�
Z

Xf

dpr � udx ¼ 0

8du 2 Vo; 8dp 2 L2ðXf Þ; ð2:16Þ
where dp is the variation of pressure. Here we have used Eq. (2.15), and the negative signs on the last two integrals are
customary. The velocity space, the variation space for velocity, and the pressure space are now:
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VuðtÞ ¼ fuju 2 H1ðXf Þ3; u ¼ u@X on @Xg; ð2:17Þ
VoðtÞ ¼ fdujdu 2 H1ðXf Þ3; du ¼ 0 on @Xg; ð2:18Þ

L2
o ¼ pjp 2 L2ðXf Þ;

Z
Xf

pdx ¼ 0

( )
; ð2:19Þ
where L2ðXf Þ is the space of square integrable functions in Xf , and subscript ‘‘o” in the name L2
o denotes the additional inte-

gral constraint on pressure. This constraint is included to remove the undetermined additive constant from the fluid pres-
sure. Using the Gauss theorem, we get
Z

Xf

qf
@u
@t
þ u � ru

� �
� dudxþ

Z
@Xs

t@Xs � dudx�
Z

Xf

du � r � sdxþ
Z
@Xs

du � s � n̂@Xs dxþ
Z

Xf

rp � dudx

�
Z
@Xs

pdu � n̂dx�
Z

Xf

dpðr � uÞdx ¼ 0 8du 2 Vo; 8dp 2 L2ðXf Þ:
ð2:20Þ
Here we have used the fact that velocity variations are zero on @X. Extracting terms with the variations du over Xf produces
the momentum equation for the fluid domain,
qf
@u
@t
þ u � ru

� �
¼ �rpþr � s; ð2:21Þ
which is same as Eq. (2.1). Terms involving du over @Xs produce the interface stress condition on the fluid–solid boundary
(2.4), and the term involving dp produces the incompressibility constraint (2.2).

Now we consider the solid domain. The weak form for the solid domain is similar to Eq. (2.16), but with an additional
rigidity constraint. First we impose this constraint on the solution space and the variation space for velocity:
Vu;rðtÞ ¼ fuju 2 H1ðXsÞ3; Dðu� uf Þ ¼ 0 in Xsg; ð2:22Þ
Vo;rðtÞ ¼ fdujdu 2 H1ðXsÞ3; DðduÞ ¼ 0 in Xsg; ð2:23Þ
where the subscript ‘‘r” indicates that the rigidity constraint is imposed on the space. With this, the virtual work statement,
i.e. the weak form, for the solid domain is:
Z

Xs

qs
@u
@t
þ u � ru

� �
� dudx�

Z
@Xs

t@Xs � dudx�
Z

Xs

pr � dudx�
Z

Xs

dpr � udx ¼ 0 8du 2 Vo;r; 8dp 2 L2ðXsÞ; ð2:24Þ
where the Lagrange multiplier p 2 L2ðXsÞ has been used to satisfy the continuity constraint. Next we follow Glowinski et al.
[30] and Patankar et al. [32] to obtain a weak form that imposes the rigidity constraint by using a Lagrange multiplier field.
To that end we first identify the term due to the rigidity constraint that will arise in the functional space, i.e. in the Lagrang-
ian of motion. The constraint equation (2.11) is a vector constraint at each point in space. Hence we consider a vector field kr

defined in Xs. We take a dot product of kr with the first of Eq. (2.11) and integrate over Xs. Using the Gauss theorem and the
boundary condition in Eq. (2.11) gives
Z

Xs

DðkrÞ : Dðu� uf Þdx ¼ 0: ð2:25Þ
This is the term due to the rigidity constraint that will appear in the functional space. Now we relax the rigidity constraint on
the velocity solution and variation spaces, and apply it in a weak form by adding a variation of Eq. (2.25) to Eq. (2.24). The
variation of the Lagrangian form DðkrÞ : Dðu� uf Þ for the constraint is
DðkrÞ : DðduÞ þ DðdkrÞ : Dðu� uf Þ: ð2:26Þ
Adding the integral of these terms to Eq. (2.24), the weak form of the equations of motion for the solid domain becomes
Z
Xs

qs
@u
@t
þ u � ru

� �
� dudx�

Z
@Xs

t@Xs � dudxþ
Z

Xs

rp � dudx�
Z
@Xs

pdu � n̂dx�
Z

Xs

dpðr � uÞdx�
Z

Xs

r � DðkrÞ

� dudx�
Z

Xs

dkr � r � Dðu� uf Þdxþ
Z

dXs

n̂ � DðkrÞ � dudxþ
Z

dXs

n̂ � Dðu� uf Þ � dkr dx

¼ 0 8du 2 H1ðXsÞ3; 8dp 2 L2ðXsÞ; 8dkr 2 H1ðXsÞ3: ð2:27Þ
Note that u 2 H1ðXsÞ3, and kr 2 H1ðXsÞ3.
Equating the variations with respect to du to zero, we obtain the momentum equation,
qs
@u
@t
þ u � ru

� �
¼ �rpþr � DðkrÞ; ð2:28Þ
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and the condition at the fluid–solid boundary,
½�pI þ DðkrÞ� � n̂ ¼ tXs : ð2:29Þ
Comparing Eqs. (2.28) and (2.29) with Eqs. (2.6) and (2.9), respectively, it is revealed that the stress within the solid is given
by rs ¼ �pI þ DðkrÞ, where kr is the Lagrange multiplier due to the rigid motion constraint in the solid. Without loss of gen-
erality, we recast Eqs. (2.28) and (2.29) by using the constraint Eq. (2.11) to get
qs
@u
@t
þ u � ru

� �
¼ �rpþr � ½2lDðuÞ� þ r � DðkÞ; ð2:30Þ

½�pI þ 2lDðuÞ þ DðkÞ� � n̂ ¼ tXs ; ð2:31Þ
where k ¼ kr � 2luf is the modified Lagrange multiplier. This form leads to a convenient combined formulation for the fluid–
solid domain:
q
@u
@t
þ u � ru

� �
¼ �rpþr � ½2lDðuÞ� þ f in X; ð2:32Þ

r � u ¼ 0 in X; ð2:33Þ

r � Dðu� uf Þ ¼ 0 in Xs;

Dðu� uf Þ � n̂ ¼ 0 on @Xs;
ð2:34Þ

u ¼ u@X on @X; ð2:35Þ
uðx; t ¼ 0Þ ¼ uoðxÞ in Xðt ¼ 0Þ: ð2:36Þ
q ¼ qf þ ðqs � qf ÞHðXsÞ is the combined density field, where HðXsÞ is the Heaviside step function which is 1 in Xs and 0 out-
side. f ¼ r � DðkÞ is the constraint force due to the distributed Lagrange multiplier. From the combined formulation above, it
is apparent that the governing equations for the fluid are applicable in the entire domain. To account for the presence of an
immersed solid there is an additional forcing term f due to the rigidity constraint (2.34). f is non-zero only in Xs. Additionally,
the difference in inertia is accounted for through the density field q. Note that the interface conditions at the fluid–solid
boundary (Eqs. (2.4) and (2.9)) mutually cancel since the boundary is now internal to the combined fluid–solid domain. This
formulation can be conveniently, although not necessarily, implemented by an immersed boundary type approach. This will
be presented in Section 3.

2.2. Vorticity equation

Vortex methods have been considered by others to simulate self-propulsion [26,31]. Generation and diffusion of vorticity
is one aspect of primary interest in these methods. Although we will not use a vortex approach, we show that our formu-
lation can provide some insights into vorticity transport.

The vorticity transport equation in the fluid or solid domain can be obtained from the curl of Eq. (2.32),
q
@x

@t
þ u � rx

� �
¼ qx � ruþ lr2ðx� xf Þ þ

1
2
r2ðr � krÞ; ð2:37Þ
where x ¼ r� u is the vorticity, and xf ¼ r� uf is the vorticity due to the imposed deformation velocity field which is non-
zero only in the solid body domain. Here we have used the identity r� ½r � DðkrÞ� ¼ 1

2r
2ðr � krÞ. Eq. (2.37) shows that the

rate of change of vorticity of a material point is caused by stretching/tilting of vortex tubes, diffusion of vorticity, and the
rigidity constraint.

The diffusion term lr2ðx� xf Þ becomes lr2
x in the fluid domain because xf is non-zero only in the solid domain. The

diffusion term is zero in the solid as follows. The rigidity constraint is DðurÞ ¼ 0, where ur ¼ u� uf is the rigid component of
the solid motion. If the deformation rate tensor associated with a velocity field is zero in a domain, then the vorticity field
corresponding to that velocity field is a constant vector in that domain (see Sokolnikoff [37, p. 27 for proof]). Thus,
rxr ¼ rðx� xf Þ ¼ 0, indicating that the rigid body component of the vorticity inside the solid must not vary with spatial
coordinates. This is consistent with the fact that the vorticity inside a region undergoing rigid body motion is twice its angu-
lar velocity. Hence there is no diffusion of vorticity in the interior of Xs, i.e. r2ðx� xf Þ ¼ 0.

The third term on the right hand side of Eq. (2.37), 1
2r

2ðr � krÞ, is non-zero only in the solid domain. Defining
kx ¼ 1

2 ðr � krÞ, it becomes r2
kx. In fact it can be formally shown, following a derivation similar to that in Section 2.1, that

kx is a Lagrange multiplier corresponding to the constraint rxr ¼ 0 in Xs, which is a consequence of the rigidity constraint
on ur . r2

kx is the source term due to this constraint.
Inside the solid domain the total vorticity is x ¼ xr þ xf , of which only the rigid component xr is unknown. The angular

velocity of the solid body is half of xr . Thus, Eq. (2.37) is effectively an equation for the angular velocity of the solid body. It
implies that the angular velocity of the solid changes due to the vorticity injected into the domain by the deforming velocity
field as well as the source term due to kx. The termr2

kx plays a role in the solid domain that is similar to that of the vorticity
diffusion term lr2

x in the fluid domain. It distributes the vorticity in the solid domain.
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A key element which shows that our Lagrange multiplier formulation connects to vortex methods in a natural way is the
vorticity jump at the solid–liquid interface. Although the velocity is continuous at the interface, its gradient – and hence the
vorticity – is discontinuous at the interface. Continuity of velocity at the interface along with the definition of vorticity gives
rise to the continuity of the normal component of vorticity [41]:
½jxj� � n̂ ¼ 0; ð2:38Þ

and the jump condition on the tangential component of vorticity:
n̂� ½jxj� ¼ �2½jDðuÞj� � n̂: ð2:39Þ
where ½j � j� denotes a jump in a variable across the interface, i.e. the value on the fluid side minus the value on the solid side.
Physically, Eq. (2.39) means that the jump in the tangential vorticity is proportional to the jump in the normal component of
the strain rate of a fluid element on the interface. It is in agreement with a separate derivation presented by Dopazo et al. [41].

Next we consider the vorticity transport at the fluid–solid interface following a procedure similar to that by Dopazo et al.
[41]. To do so, we divide the momentum equation (2.32) by the density in the respective domains, take a curl of the resulting
equations, and integrate it over a pillbox V that includes the fluid–solid interface. This gives
Z

V

Dx

Dt
dx ¼

Z
V

x � rudx�
Z

V
r� rp

q

� �
dxþ

Z
V
r� r � r

q

� �
dx; ð2:40Þ
where r ¼ 2lDðuÞ þ DðkÞ ¼ 2lDðu� uf Þ þ DðkrÞ. Inside the solid, since Dðu� uf Þ ¼ 0, it becomes DðkrÞ. Inside the fluid, k ¼ 0,
hence r ¼ 2lDðuÞ. In the limit of zero thickness of the pillbox, the left hand side becomes zero by Reynolds transport the-
orem and the fact that, when the boundary layer is fully resolved, vorticity does not have any singularity, but has only a dis-
continuity. The generalized Gauss theorem is then applicable in this pillbox (see Xu and Wang [42, p. 1952, Theorem 3.3]).
The first integral on the right hand side approaches zero owing to the fact that both vorticity and velocity gradient have dis-
continuities but no singularities. Using the generalized Gauss theorem in the limit of the infinitesimally thin pillbox, we
obtain
�n̂� rp
q

����
����

� �
þ n̂� r � r

q

����
����

� �
¼ 0: ð2:41Þ
On the fluid side,
n̂�r � r
q
¼ n̂�r � 2lDðuÞ

qf
: ð2:42Þ
Here we use subscripts ‘‘f” and ‘‘s” to denote quantities in the fluid and the solid. Upon rearranging using Einstein’s index
notation, and using the fact that the flow is incompressible, it can be shown that
n̂�r � r
q
¼ l

qf
½ðn̂ � rÞx�rx � n̂�: ð2:43Þ
Similarly, on the solid side,
n̂�r � r
q
¼ n̂�r � DðkrÞ

qs
¼ 1

qs
½ðn̂ � rÞkx �rkx � n̂� þ n̂�rðr � krÞ

qs
: ð2:44Þ
where we have used the relation kx ¼ 1
2 ðr � krÞ. Using Eqs. (2.43) and (2.44) in Eq. (2.41), the interface condition can be

written as:
qf
x þ qs

x ¼ n̂� �rp
q

����
����

� �
� n̂�rðr � krÞ

qs
� l

qf
rx � n̂þ 1

qs
rkx � n̂; ð2:45Þ
where
qf
x ¼ �

l
qf

n̂ � rx; ð2:46Þ
and
qs
x ¼

1
qs

n̂ � rkx: ð2:47Þ
In Eqs. (2.45)–(2.47), all quantities are computed at the fluid–solid interface; those involving fluid variables are computed in
a limit from the fluid side and those involving solid variables are computed in a limit from the solid side. qf

x and qs
x are the

fluxes of vorticity from the fluid–solid interface into the fluid and solid domains, respectively. Thus, qf
x þ qs

x is the total
source of vorticity at the fluid–solid interface. The right hand side of Eq. (2.45) shows that vorticity is generated at the inter-
face due to a pressure jump, the rigidity constraint (with the specified deformation kinematics), and the stretching and tilt-
ing of the vortex tubes at the interface.
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The vorticity generation equation (2.45) could be specialized to high Reynolds number flows in which vorticity is confined
to vortex sheets at the interface and is shed at the trailing edge. This could lead to equations for interfacial vortex sheet
dynamics similar to those derived for liquid–gas interfaces by Dopazo et al. [41]. Furthermore, in Section 3.5 we show that
the discrete version of our correction step is equivalent to the vortex methods via the generation of a vortex sheet of appro-
priate strength at the solid–fluid interface.

3. The self-propulsion algorithm

In this section, we present an algorithm to solve Eqs. (2.32)–(2.36) that were formulated for the problem of self-propul-
sion. The new algorithm is called the Fully Resolved Momentum Redistribution for self-Propulsion (FuRMoRP) algorithm. Re-
call that the term ‘‘fully resolved simulation” (FRS) means that the fluid–solid coupling is not computed using any reduced
order models (e.g. drag laws). Instead, the flow around the swimming body is fully resolved, where the fluid could be gov-
erned by any constitutive behavior. Here, we have considered only constant viscosity Newtonian fluid. However, the formu-
lation is generalizable to other constitutive forms including turbulence models such as large eddy simulation (LES) or
Reynolds averaged Navier–Stokes (RANS) simulations. E.g. if all flow scales including the smallest turbulent scales are re-
solved, then our method would be a Fully Resolved–Direct Numerical Simulation (FR-DNS) scheme, while an LES based ap-
proach would be an FR-LES scheme.

The FuRMoRP algorithm can be implemented by a body-fitted mesh approach as well by an immersed boundary ap-
proach. We have implemented the algorithm by an immersed approach in the interest of efficiency when simulating a vari-
ety of complex morphologies. In this approach the fluid–solid interface condition is handled implicitly, allowing the use of
regular grids even in the case of irregular body configurations. This eliminates the need for grid regeneration. We use a mixed
Eulerian–Lagrangian formulation wherein the solid is tracked by a collection of Lagrangian particles distributed within the
volume of the body, and the fluid is discretized on an Eulerian background grid. Hence, the location of the fluid–solid inter-
face is captured to within the stencil of the discrete Eulerian–Lagrangian interpolation function (discussed later).

In the algorithm presented below, and in the numerical examples to be presented later, we will assume that the im-
mersed body is neutrally buoyant, i.e. qf ¼ qs. This is often reasonable for swimming animals. Note that our formulation,
presented in the previous section, is general and can be implemented for non-neutrally buoyant bodies as well.

The mathematical formulation presented above implies that there are three central concepts in the FuRMoRP algorithm:

(1) Any motion of a swimming solid body can be described as the sum of a rigid body motion and a deformation velocity.
(2) The rigidity constraint on the rigid component of the solid velocity field gives rise to a force field just like incompress-

ibility gives rise to a force due to pressure.
(3) The core mechanism of self-propulsion is the redistribution of momentum in the entire domain in such a way as to

generate the appropriate swimming velocity of the body. The concept of momentum redistribution will become clear
when the method is presented below.

The second statement above has been extensively used in studies of rigid particles in fluids [43,32,33]. The momentum
redistribution concept is an extension of that approach to self-propelling flexible bodies. Furthermore, the current method
separates the elastic response of the solid from the fluid flow solution. Hence, it leverages the availability of prescribed mo-
tion as 3D kinematic data acquisition techniques become more common for biological applications [19,20,44]. This can pro-
vide an alternative to relying on force measurements, as velocity measurements are more amenable to non-intrusive
recording techniques.

The algorithm has three steps:
Step One: We regard the entire domain as a fluid and solve for an intermediate velocity field û using the incompressible

Navier–Stokes equations, with the assumption of constant viscosity:
q
û� un�1

Dt
þ qðun�1 � rÞun�1 ¼ �r~pþ lr2un�1; ð3:1Þ
where superscript n� 1 denotes the solution at the end of the previous time step, and superscript n is the solution at the end
of the new time step. It should be noted that Dt may be regarded as a sub-step of a higher order time marching scheme, e.g. a
fourth order Runge–Kutta scheme. In that case, ‘‘n� 1” and ‘‘n” would denote those substeps. ~p is an intermediate pressure
(which will later be corrected when we impose the rigidity constraint), l is the fluid viscosity, and q is the density of the fluid
and the organism. The incompressibility constraint r � û ¼ 0 gives rise to the Poisson equation for pressure,
r2~p ¼ �r � ½qðun�1 � rÞun�1�: ð3:2Þ
This work assumes the prescribed deformation to be divergence-free. However, some animals may be changing their body
volume dynamically during propulsion [45], and the current formulation can be adapted to that situation by appropriate
addition of mass sources in the Poisson equation. We do not consider this in the present work.

Step Two: A second projection step is required. For simplicity of exposition we will assume that there is only one swim-
ming organism in the domain; however, the approach is trivially generalizable to multiple swimming bodies. û is not the
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final velocity field inside the body of the organism because the deforming motion uf is not yet imposed in the solid body, and
the rigid component ur of the body velocity is yet to be determined. To take into account both of these effects, the projection
step corrects the velocity in the body. This correction is equivalent to adding a force f in the semidiscrete Navier–Stokes
equations, to obtain a corrected velocity ~u:
q
~u� û
Dt

¼ f ; ð3:3Þ
where f is an equivalent of the constraint force,r � DðkÞ, appearing in Eq. (2.32). An equation for f follows from the constraint
in Eq. (2.34). Noting that ~u must satisfy Eq. (2.34), we get
r � Dð~u� uf Þ ¼ r � Dðû� uf þ
f Dt
q
Þ ¼ 0 in Xs;

Dð~u� uf Þ � n̂ ¼ Dðû� uf þ
f Dt
q
Þ � n̂ ¼ 0 on @Xs:

ð3:4Þ
This implies that û� uf þ f Dt
q is a rigid motion, which should in fact be equal to the rigid component of the swimmer’s veloc-

ity. Consequently, f is given by
f ¼ q
ub � û

Dt
: ð3:5Þ
In the above equation, ub ¼ ur þ uf is defined only within the solid body, where
ur ¼ U þ x� r; ð3:6Þ

is yet to be determined, and r is a position vector with respect to the centroid of the solid body.

The rigid velocity ur is determined as follows. Eqs. (3.3) and (3.5) imply that, in the solid domain, û is corrected to ~uð¼ ubÞ.
Given that we are modeling a self-propelled body, the total translational and angular momenta in the entire fluid–solid sys-
tem should be conserved during the projection step. Otherwise, it would lead to an unphysical external force on the system.
To conserve the linear and angular momenta during the projection step, we need to ensure that the momenta in the û and ~u
fields are the same. Additionally, we note that the projection step (Eqs. (3.3) and (3.5)) is effectively imposed only in the solid
domain since f is non-zero only in that domain. The momentum conservation condition thus leads to equations for the un-
known translational and angular velocities U and x:
MU ¼
Z

Xs

qsðû� uf Þdx; ð3:7Þ

Ix ¼
Z

Xs

r � qsðû� uf Þdx; ð3:8Þ
where M is the mass of the body and I is the instantaneous moment of inertia tensor of the body. The projection step requires
no iterations and is computationally inexpensive. It is identical to the approach used by Patankar [33] for freely moving rigid
bodies, but extended in this case to flexible bodies with specified deformations.

Step Three: Although the first two steps maintain the divergence-free nature of the velocity field in the interior of the fluid
and the solid domains, Step Two above introduces a discontinuity in velocity at the interface, giving rise to a non-zero diver-
gence at the interface (explained later in Section 3.5). Hence in Step Three, ~u is projected onto a divergence-free velocity
space by using a scalar field / to remove this non-zero divergence as:
un ¼ ~u�r/; ð3:9Þ
where / is obtained by solving the Poisson equation
r2/ ¼ r � ~u; ð3:10Þ
This step is equivalent to adding a pressure force �r q/
Dt

� �
in the Navier–Stokes equations:
q
un � ~u

Dt
¼ �q

r/
Dt

; ð3:11Þ
Adding Eqs. (3.1), (3.3), and (3.11), we see that the three steps combined together are equivalent to
q
un � un�1

Dt
þ qðun�1 � rÞun�1 ¼ �rpn�1 þ lr2un�1 þ f ; ð3:12Þ
where the corrected pressure is pn�1 ¼ ~pþ q/
Dt .

To summarize, the FuRMoRP algorithm has the following three steps:

(1) Solve the Navier–Stokes equation (3.1) assuming the entire solid and fluid domain is a fluid.
(2) Obtain the rigid motion using Eqs. (3.7) and (3.8). Correct the velocity in the solid body using Eq. (3.3).
(3) Apply the divergence-free condition on the corrected velocity according to Eq. (3.9).



2376 A.A. Shirgaonkar et al. / Journal of Computational Physics 228 (2009) 2366–2390
In the algorithm above, the solid body can be fully deforming, partly rigid and partly deforming, or fully rigid. The nature of
the body is defined by the deformation velocity field uf . We will consider various body types in our test cases. Additionally,
the solid body can be three-dimensional, or it can be an immersed surface or a curve, or any combination. The fact that the
algorithm above is valid for immersed surfaces and curves can be rigorously derived. We will show test cases with immersed
surfaces that are rigid or flexible, which show that our algorithm accurately predicts their dynamics.

In the above presentation of the FuRMoRP algorithm we have treated the convection and viscous terms explicitly. An im-
plicit approach can be easily devised.

If the three steps in the FuRMoRP algorithm are solved as given above at each time step, it will lead to a scheme that is
first order with respect to time. Higher order temporal schemes can be easily constructed by executing the three steps of the
FuRMoRP algorithm within the framework of, e.g. a Runge–Kutta-type scheme. In this case, as mentioned before, the three
steps would be carried out at each sub-step of the time marching scheme. The spatial order of accuracy will depend on the
discretization of the spatial derivatives, and the interpolation scheme used in the Eulerian–Lagrangian coupling between the
fluid mesh and the marker particles representing the solid body. The implementation details, including the current choice of
spatial and temporal discretization and the interpolation scheme, will be discussed in this section. We will also discuss the
algorithmic efficiency and the physical interpretation of the projection step.

3.1. Spatial discretization and time marching

We implemented FuRMoRP using an immersed boundary method for solid bodies. Step One of the algorithm is solved on a
uniform structured mesh in the entire domain. Note that the momentum redistribution algorithm is conceptually separate from
the flow solver, and hence can be combined equally well with a flow solver that uses a non-uniform mesh. The spatial derivative
operators are discretized using 6th order compact finite difference schemes with high spectral resolution [46] and optimized
coefficients [47]. The near-spectral resolution of these schemes is useful in resolving the sharp gradients near the solid surface
with fewer grid points. An explicit time stepping scheme is used for time advancement. We use a low storage, low dissipation and
dispersion Runge–Kutta scheme of fourth order (LDDRK4) [48], which has eleven stages in which the solution proceeds by 2Dt.
The three step FuRMoRP algorithm is solved at each of these stages. Since the mesh is structured and uniform, we solve the pres-
sure Poisson equation (Eq. (3.2)) by using Fast Fourier Transforms (FFT). Similarly, Eq. (3.10) in Step Three of the algorithm is also
solved using an FFT solver. Implementation of Step Two is done by using Lagrangian particles, and is explained in Section 3.2.

Our current implementation is parallelized and uses the Message Passing Interface (MPI) library for interprocessor com-
munication. The fluid flow solver (i.e. solutions without an immersed solid body) was validated using test cases that allow
comparison with analytical solution or experimental data. For more details the reader is referred to Shirgaonkar and Lele
[49]. Validation of the FuRMoRP based code will be presented in Section 4.

3.2. Eulerian–Lagrangian coupling and interpolation

We use a mixed Eulerian–Lagrangian approach. In this approach there is a structured mesh for the entire domain, and the
solid body is represented by a collection of Lagrangian marker particles or points.

Step Two of the algorithm, where the velocity in the solid domain is corrected to account for the swimming motion, re-
quires Eulerian–Lagrangian interpolation. The deforming velocity field uf is known at the location of the Lagrangian marker
particles within the solid body. Additionally, we define a scalar function n which is equal to one at the Lagrangian marker
particles. To prepare for the computation of Eqs. (3.7) and (3.8) we project uf and n from the Lagrangian particles to the back-
ground Eulerian grid. This is done using top hat interpolation as follows. For each Lagrangian marker particle, we determine
which eight Eulerian grid nodes surround it. The value of the variable (i.e. uf or n) at the marker particle is then assigned to
those Eulerian nodes. For nodes that have contributions from multiple marker particles, the arithmetic average of the var-
iable values from all contributing marker particles is assigned to that node. For Eulerian nodes in the fluid domain, no par-
ticle contribution results, hence the value at these nodes is set to zero.

This projection results in uf and n being defined on the Eulerian grid. It is non-zero only in the region that overlaps with
the solid body and zero everywhere else. Specifically, the scalar field nðx; y; z; tÞ is equal to one on Eulerian nodes that fall in
the solid domain and zero outside. Thus, nðx; y; z; tÞ identifies the location of the solid body on the Eulerian grid. Since the
solid body shape does not conform to the background mesh, there is some distortion of the body shape on the order of
the grid size.

The integration operations in Eqs. (3.7) and (3.8) are now performed as:
Z
Xs

gðx; y; z; t�Þdxdydz ¼
Z

X
nðx; y; z; t�Þgðx; y; z; t�Þdxdydz ð3:13Þ
for any generic variable g at any given time t�. The integrals are numerically evaluated as summation over Eulerian grid points.
Once Eqs. (3.7) and (3.8) are solved, we correct the velocity at all Eulerian nodes that fall within the solid domain, i.e. at all

Eulerian nodes where n ¼ 1. To do so we replace û by ub ¼ U þ x� r þ uf . This is equivalent to implementing Eqs. (3.3) and (3.5).
Some remarks regarding this interpolation scheme should be made. Instead of the top hat interpolation, higher order

interpolation methods can be used to reduce the error. Lower order interpolation functions such as the delta function
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[50] may introduce numerical diffusion at the interface, and higher order polynomial interpolations are known to cause spu-
rious oscillations near the sharp gradients at the boundary. These issues can impact the accuracy of immersed boundary tur-
bulent flow simulations. Better higher order interpolation schemes are available [51,52], or the immersed interface method
[53,54] may provide better accuracy at the interface. The effect of a specific choice of interpolation scheme on numerical
accuracy has been addressed by other authors [55,56].

For thin membranes, the higher order interpolation functions (e.g. delta function) require costly matrix inversions in or-
der to achieve the specified velocity uf at the solid location. For the grid points interior to 3D solid objects moving at a pre-
scribed velocity, this issue is relatively benign and matrix inversion can be avoided. Various types of interpolations have been
used in such problems [55,57,56]. Also, for membranes where the elastic force is prescribed, delta function interpolation
without matrix inversion can be used to spread forces to neighboring grid points. For thin membranes with specified velocity
(such as some of the examples illustrated later in this paper), top hat interpolation achieves the desired prescribed velocity at
the particle locations in the Eulerian velocity field, without requiring expensive computations or tedious book keeping.

Sensitivity tests for the number of Lagrangian particles per grid cell ðNpÞ representing the solid body showed that
although the velocity field away from the body is relatively insensitive to Np; Np ¼ 8 is needed to obtain accurate fluid–solid
surface forces. This is consistent with the observation in prior literature that two particles are needed in each direction per
grid cell to prevent ‘‘leakage” of fluid through the membrane [50].

3.3. Force computation

The force on the solid body is obtained by using the integration operation (Eq. (3.13)). In particular, the viscous and pres-
sure forces on the solid can be computed by taking g ¼ lr2un�1, and g ¼ �rpn�1, respectively. The computed forces can
have some high frequency noise, which is inherent to the immersed boundary method [58] due to movement of the so-
lid–fluid boundary in a fixed background Eulerian mesh. To remove the noise and obtain physical values of the forces up
to the grid-timescale, we filter the modes in the forces which vary faster than the grid-timescale. The grid-timescale here
is defined as the time required by the point with the maximum velocity on the fin to travel one grid cell. Since the spatial
discretization can only capture length scales up to the grid cell size, the above smoothing retains the forces down to the tem-
poral scale consistent with the smallest resolved spatial scale.

3.4. Computational efficiency considerations

One of the strengths of the momentum redistribution algorithm is its efficiency during the correction step. The correction
step, which incorporates the solid body into the flow solver, consumes a very small fraction of the total computational time
taken by the flow solver. Finite difference temporal and spatial schemes have linear complexity. For incompressible flows the
pressure solution is typically the most CPU-intensive task, which gives rise to a slightly superlinear complexity, depending
on the pressure solution method used.

The solid projection scheme given by Eqs. (3.7) and (3.8) consists of spatial integration which is a linear-time operation.
The pressure component of the projection force, given by Eqs. (3.9) and (3.10), can be included in the pressure solution of the
flow solver thereby avoiding extra cost. In the examples presented here, the convective CFL number was more restrictive
than the viscous CFL number, and was in the range 0.2–0.5. Table 1 lists the fraction of the total time required for the pro-
jection scheme with the current implementation for the flexible membrane problem (Section 4.2), the horizontally moving
vertical plate in finite domain (Fig. 4), and the black ghost knifefish (Section 4.5) to span 2D and 3D simulations. The vertical
plate case tests the extremely load-imbalanced spatial distribution of the Lagrangian particles representing the plate, where
all particles are contained in a single processor (a total of eight processors were used). Table 1 shows that for the more typ-
ical cases, the solid body projection part takes less than 5% of the total CPU time. This is significantly smaller than the 86%
fraction reported for the same problem size in the case of the swimming sheet [59]. Even with the highly imbalanced particle
load among processors, the cost is reasonable.

3.5. Physical interpretation of the projection step

3.5.1. Strain rate redistribution within the solid body
Recall that in the projection step, the intermediate velocity field û is corrected to the solid body velocity ub ¼ ur þ uf .

Hence the projection step can be represented by the application of a force field, f, in the semidiscrete Navier–Stokes equa-
tions (Eq. (3.3)). The change in the velocity gradient tensor during this step is
Table 1
CPU tim

Case

Swimm
Vertica
Black g
e required by the solid body correction part of the algorithm.

Comments CPU time for correction module (%)

ing sheet [Section 4.2] 2D 1.3
l plate of Fig. 4 2D, extreme load imbalance of particles among processors 11.3
host knifefish [Section 4.5] 3D 3.5
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Gðub � ûÞ ¼ GðubÞ � GðûÞ ¼ Gðf ÞDt
q
; ð3:14Þ
where GðUÞ ¼ @Ui=@xj is the gradient of any vector field U. Considering first the symmetric part of this equation,
Dijðub � ûÞ ¼ 1
2
ðubi;j þ ubj;iÞ �

1
2
ðûi;j þ ûj;iÞ ¼

1
2
ðfi;j þ fj;iÞ

Dt
q
: ð3:15Þ
The trace of this equation is
r � ub ¼ ðr � f Þ
Dt
q
; ð3:16Þ
since û is divergence-free. This term, r � ub is zero in the interior of the solid, because ub ¼ ur þ uf , and both ur and uf are
divergence-free. The projection step (Step Two) creates a non-zero divergence at the interface. Depending on the interpola-
tion scheme, this divergence is spread over a few grid cells near the interface. This divergence is removed using the correc-
tion r/ (Eq. (3.9)), giving an additional mechanical pressure force. The deviatoric part of Eq. (3.15) gives
Ddijðub � ûÞ ¼ 1
2
ðubi;j þ ubj;iÞ � r � ub

� �
� 1

2
ðûi;j þ ûj;iÞ � r � û

� �
¼ 1

2
ðfi;j þ fj;iÞ

Dt
q
�r � f Dt

q

� �
; ð3:17Þ
where the subscript ‘‘d” indicates deviatoric part. But ub ¼ ur þ uf , and ur is a rigid body motion, giving us
1
2 ðubi;j þ ubj;iÞ � r � ub ¼ 1

2 ðufi;j þ ufj;iÞ � r � uf . Hence the force construction f is such that it drives the strain rate of the velocity
field û to that of uf . Patankar [33] presented this efficient force construction for rigid bodies, which we have extended here
for flexible bodies with specified kinematics. Now considering the antisymmetric part of Eq. (3.14), we see that the rotation
tensor R corresponding to û is changed by the vorticity addition, r� f , to the target rotation corresponding to ub:
DRij ¼
1
2
ðubi;j � ubj;iÞ �

1
2
ðûi;j � ûj;iÞ ¼

1
2
ðfi;j � fj;iÞ

Dt
q
: ð3:18Þ
The pressure correction in Eq. (3.9) creates no additional vorticity. In summary, a reinterpretation of the projection step pro-
posed by Patankar [33] in the context of deforming bodies is as follows. The correction step serves the purpose of changing
the velocity gradient tensor field inside the solid domain to the target velocity gradient tensor, which is a linear superposi-
tion of: (1) the gradient Gðuf Þ of the specified deformation velocity uf , and (2) a rigid body motion with zero strain rate and
rotation GðurÞ. Below we show that this process is felt by the fluid domain through velocity discontinuities at the solid–fluid
interface, entering the fluid as a vortex sheet and divergence at the interface.

3.5.2. Velocity discontinuities at the interface
Consider a region X� surrounding Xs, just outside Xs, with a small thickness � normal to @Xs, with
lim
�!0

X� ¼ @Xs:
In the projection step, û is corrected to ub. This in general creates a velocity discontinuity at the fluid–solid interface. Here we
show that the tangential velocity jump causes a vortex sheet to be deposited at the interface, and the normal velocity jump
causes a ‘‘divergence sheet” at the interface. The change in total vorticity in Xs can be expressed as
Dxs ¼
ZZZ

Xs

xb dV �
ZZZ

Xs

x̂dV ; ð3:19Þ
where xb ¼ r� ub and x̂ ¼ r� û is the vorticity after and before the projection step and dV 2 R3 is a volume element.
Using a version of the Gauss theorem on the elements of the tensor �ijkuk, we obtain
Dxs ¼
ZZ

@Xs

n̂� ub dA�
ZZ

@Xs

n̂� ûdA ¼
ZZ

@Xs

n̂� ½juj�dA; ð3:20Þ
where ½juj� ¼ ðub � ûÞj@Xs
is the velocity jump across the interface, and dA 2 R2 is a surface element in R3. In the infinite de-

gree of freedom (continuous) system, this discontinuity is equivalent to a vortex sheet of strength c ¼ n̂� ½juj� according to
the definition x ¼ cdð@XsÞ, where n̂ is the outward normal unit vector at the interface and dð@XsÞ is the Dirac delta function at
the interface location. We obtain the total vorticity injected into the fluid due to the vortex sheet in X�:
Dx� ¼
ZZZ

X�

xdV ¼
ZZZ

X�

cdð@XsÞdndA ¼
ZZ

@X�;out

n̂� uout dA�
ZZ

@X�;in

n̂� uin dA; ð3:21Þ
where @X�;out and @X�;in are the outward and inward facing boundaries of X�, with outward defined as away from the solid
body, and n̂ is the local coordinate normal to the body. dV ¼ dndA where dn 2 R1 is a line element normal to the interface in
R3. Since the correction step leaves the velocity in the fluid unchanged (in the continuum limit), uout ¼ û, and uin ¼ ub is the
solid body velocity at the interface at the end of the projection step. In the limit �! 0, this gives
Dx� ¼ �
ZZ

@Xs

n̂� ½juj�dA: ð3:22Þ
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Eqs. (3.20) and (3.22) say that the total vorticity change in the solid domain during the projection step is exactly canceled by
the vortex sheet deposited on the body surface. Thus the projection step conserves the total vorticity in the domain. The vor-
tex sheet diffuses into the fluid over the next time step. This vorticity generation is fundamentally equivalent to the impo-
sition of the no-slip boundary condition at the interface using a vortex sheet in vortex methods [31].

Similarly, it can be shown using the Gauss theorem for the velocity vector that a divergence sheet of strength v ¼ ½juj� � n̂,
where v is defined by r � u ¼ vdð@XsÞ, is injected into the fluid at the interface during the projection step. Step Three of the
algorithm generates an appropriate pressure force (see Eq. (3.9)) to remove this non-zero divergence.

Finally, we note that in the continuous system these vorticity and divergence sheets are not present. They are purely arti-
facts of discretization, and are smeared near the interface by the spatial differentiation scheme and the interpolation scheme.

4. Numerical examples

We present the application of FuRMoRP to problems with different geometries. We choose example problems to span
one-, two- and three-dimensional bodies, regular and irregular body shapes, rigid and flexible bodies, and their
combinations.

4.1. Rigid thin membrane

In simulations of moving body problems, immersed boundary and immersed interface methods are used usually for solid
bodies with specified motion [57] or thin membranes with specified stiffness. Few simulations of flexible membranes with
specified velocity are available, mainly due to the difficulties in satisfying the exact velocity boundary condition on the thin
interface using an inexpensive non-global interpolation. Taira and Colonius [60] recently reported a discrete Lagrange mul-
tiplier method and presented the Stokes’ problem as one of the test problems. We study the same problem first, and also a
thin plate moving perpendicular to the flow which is more challenging for an immersed numerical method to handle be-
cause of the possibility of leakage due to the impinging flow.

As a first step we compare numerical and analytical results for an impulsively started plate, known as Stokes’ first prob-
lem. A thin horizontal plate of infinite horizontal extent is located at y ¼ 0 and is impulsively moved at a constant velocity Uo

in the horizontal direction. The transient velocity profile for y P 0 is given as [61]
uðy; tÞ ¼ Uo 1� erf
y

2
ffiffiffiffiffi
mt
p

� �� �
: ð4:1Þ
Without loss of generality we choose the length and time scales as L ¼ 1; Uo ¼ 1, and Re ¼ 1=m ¼ 500. Then the drag coef-
ficient Cd is defined as F= 1

2 qU2
oA, where F and A are the total viscous force acting on one surface of the plate, and the area per

unit depth of that surface. It can be evaluated as
Cd ¼
2ffiffiffiffiffiffiffiffiffiffiffi
ptRe
p ; ð4:2Þ
where time has been non-dimensionalized by L=Uo. The numerical and theoretical drag coefficients and velocity profiles are
compared in Fig. 2. A grid convergence study shows that the numerical method gives first order for the error norms of the
velocity field (Fig. 3) due to the first order interpolation used between the Lagrangian and Eulerian grids. It is known that
with sufficiently smooth force density at the interface (e.g. a regularized delta function), the immersed boundary method
(IBM) can be formally second order accurate [62]. Usually the formal order of accuracy of IBM is studied with such suffi-
ciently smooth forces. In the presence of singular delta function force densities such as in the Stokes’ first problem, the for-
mal second order of accuracy is not practically achievable due to the presence of discontinuity in the velocity derivatives
across the interface, although the velocity itself is continuous [62,63,54].

Next we consider a vertical thin plate of height b and infinite extent in the third dimension (see Fig. 4) moving at velocity
U in the x-direction in an infinite quiescent fluid. Dennis et al. [64] have derived the 2D solution giving an asymptotic value of
the drag coefficient, Cd ¼ 2:09 for Re ¼ Ub=m ¼ 20. For our simulations we take the finite domain dimension H ¼ 22b to keep
the periodic boundary condition effects small and the number of grid points 704� 704. Through the duration of the simu-
lation, the streamline pattern near the periodic boundaries showed that the perturbation resulting from the image vortices is
visually undetectable. The thin plate was represented by a spatial distribution of Lagrangian particles over one grid cell
thickness in the x direction. Each grid cell denoting the plate contained eight particles distributed randomly within that cell.
The time history of Cd ¼ F= 1

2 qU2b, where F is the total drag force per unit depth acting on both surfaces combined, is com-
pared with the results of Dennis et al. [64] in Fig. 4.

Since the Reynolds number is low, the small difference between the two can be attributed to the finite extent of the do-
main. The noise in CD may be attributed to the high correlation of Lagrangian particle positions in the x direction, whereby all
particles transition from one grid cell to another simultaneously, within the time window Dx=U. This coherence results from
the impinging nature of the flow. The spurious oscillations have been recognized as an outcome of the movement of solid–
fluid boundaries in a background Eulerian mesh [58]. For more generic flows with flexible bodies, this coherence is expected
to be substantially diminished due to the body motion, and as we demonstrate later, the noise in the forces is small in all of
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the numerical tests. The most benign situation is seen in the Stokes’ first problem above, where particles do not jump from
one grid cell to another in the direction perpendicular to the plate surface. Hence the noise is absent (Fig. 2).

Next, we consider the case when the blocking ratio k ¼ b=H is 0.2 and Re ¼ 20 for which Dennis et al. [64], provide flow
fields. The upper and lower boundaries are solid walls and in the x direction the boundary conditions are periodic. The solid
walls are modeled by frozen Lagrangian immersed particles with zero velocity at all times. The streamline pattern and vor-
ticity field produced by the numerical method (Fig. 5(a)) agree well with those observed experimentally by Taneda and Honji
[65] and Dennis et al. [64], and computationally by Bozkurttas et al. [66] and Koumoutsakos and Shiels [67]. Grid spacing of
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b=32 was used in both directions. Quantitative comparison with experimental results are shown in terms of the bubble size
in Fig. 5(b). The bubble size is defined as the horizontal distance of the stagnation point in the wake from the plate. Time is
non-dimensionalized by b=U. Since the initial impulse generates a transient which may be captured to different levels of
accuracy by experiments and computations, the instance in our results and those of Dennis et al. [64] is matched at the first
data point of Dennis et al. [64] to remove the effect of the transient on the comparison. We have also successfully tested our
code by calculating the bubble size at a Reynolds number of 126 (see Shirgaonkar et al. [68]).

We compared (see Fig. 6) the time history of the drag coefficient for a higher Reynolds number of 126 to the vortex par-
ticle method simulations by Koumoutsakos and Shiels [67]. The immersed boundary formulation causes small spurious
oscillations in the drag force as explained above for the case of the plate in an infinite domain. Here we have time-averaged
the drag coefficient with a window of four consecutive time steps. Our simulations are with k ¼ 1=6 and show excellent
agreement with Koumoutsakos and Shiels [67]. The initial impulsive response to the discontinuity in velocity is dependent
on the numerics, and cannot be directly compared between the two methods.

4.2. Flexible thin membrane

We now simulate a free-swimming flexible membrane using the momentum redistribution algorithm. A thin, doubly infi-
nite flexible sheet located at y ¼ 0 oscillates (in its own frame of reference) with a small amplitude b as
y ¼ b sinðkx�xtÞ; ð4:3Þ
where k ¼ 10p cm�1; x ¼ 8p s�1 are the wavenumber and angular frequency of oscillations, and x and t are in units of cen-
timeters and seconds, respectively. The density and viscosity of the fluid is q ¼ 1 g=cm3 and 0.01 g/cm s. The Reynolds num-
ber Re ¼ qx=lj2 is 2.5. These choices of parameter values are made to match the same case examined by Fauci and Peskin
[59]. The oscillations cause momentum redistribution within the fluid and the sheet acquires a swimming velocity U.

Taylor [69] derived an expression for the swimming velocity using asymptotic expansion for small amplitude Stokes flow:
U
V
¼ 1

2
b2j2 1� 19

16
b2j2

� �
: ð4:4Þ
Tuck [70] derived U for finite Reynolds numbers, which for small amplitudes, is given by
U
V
¼ 1

4
b2j2 1þ 1

FðRÞ

� �
; ð4:5Þ
where
FðRÞ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Re2

p
2

 !1=2

: ð4:6Þ
Our numerical simulations used a 2D domain size of k� k where k ¼ 2p=j is the wavelength of oscillations. We used a
64� 64 uniform grid with periodic boundary conditions in both directions, which is the same resolution used by Fauci
and Peskin [59]. A grid sensitivity study, which is shown in Fig. 8, was done to verify that this resolution is sufficient to cap-
ture the swimming velocity accurately. This is not a plot for the formal order of accuracy of our approach. Plots for the formal
order of accuracy of our scheme, based on L2 and L1 norms, were plotted in Fig. 3 for Stokes’ problem. Periodicity in x is
equivalent to the infinite extent of the sheet in x. For small amplitudes, the periodicity in y does not affect the results much
so that we can compare the velocity to the analytical solutions of Taylor [69] and Tuck [70] which are for infinite domains.
We verified this by performing a simulation with domain size k� 2k for which the results were found to be almost identical
to the larger domain results. Even when the sheet amplitude is sub-grid, the numerical method is able to capture the correct
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swimming velocity. The only specified motion is the undulating motion of the sheet in its own frame of reference. The swim-
ming velocity is computed as a part of the solution along with the flow field. Fig. 7 shows that our results for U and the flow
field match well with Fauci and Peskin [59], Taylor [69] and Tuck [70]. Note that the sheet is free to translate in the x and y
directions as dictated by the swimming velocity, and in general it would also experience oscillatory moments with zero
mean value resulting from the fluid forces. This would create discontinuities (‘‘holes”) in the sheet at the periodic boundaries,
which are non-physical and they also give rise to Gibbs’ oscillations near the boundaries, manifested as spurious generation
of high magnitudes of vorticity. For all simulations we prevented the rotation to avoid this artifact in this test problem. In
practical applications, this artifact does not arise because of the finite extent of real organisms.
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Table 2
Drag coefficient and bubble size b for 2D circular cylinder at Re ¼ 40.

Study CD b=d

Present 1.52 2.2
Fornberg [71] 1.50 2.24
Marella et al. [72] 1.52 2.30
Kim et al. [55] 1.51 –
Nieuwstadt and Keller [73] 1.55 2.33
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4.3. Rigid body

We consider a fixed infinite cylinder of diameter d with an imposed velocity in an infinite domain at Re ¼ 40 based on the
cylinder diameter. A domain size of 30d� 30d was chosen to keep boundary effects small. The cylinder was initially placed at
ðx; yÞ ¼ ð4d;15dÞ and was moved in the þx direction with speed U. The number of grid points were 750� 750, uniform in
both directions. The drag coefficient, defined as CD ¼ F= 1

2 qU2d, where F is the drag force per unit depth acting on the cylin-
der, is compared with previous experimental and numerical studies (Table 2), along with the bubble size, defined as the dis-
tance of the rear stagnation point from the rear end of the cylinder along the centerline. The value of CD ¼ 1:52 from our
simulations compares well with other computational [71,55,72,73] and experimental [74] studies. Our values of CD lie in
the range given in Table 6 in [71] (1.49–1.55) and Table 3 in [72] (1.48–1.52). The time history of the drag coefficient and
the steady streamline pattern are shown in Fig. 9.

4.4. Flexible body

As an illustrative example of a flexible body we choose a two-dimensional eel in forward swimming generated by an
undulating motion transmitted along its body length. The geometry and the motion specification is taken from Kern and
Koumoutsakos [11]. The width of the eel, wðxÞ, grows from zero at the nose to wh ¼ 0:04L at the head, and then decreases
linearly to zero at the tail:
wðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2whx� x2

p
0 6 x < xh;

wh
L�x

L�xh
xh 6 x < L;

(
ð4:7Þ
where L is the projected length of the eel along its main axis. The main axis is defined as the line about which the displace-
ment of the animal’s midline is measured. This displacement is given as [11]
yðx; tÞ ¼ 0:125
xþ 0:03125

1:03125
sin½2pðx� t=TÞ�; ð4:8Þ
where T is the period of undulations. The peak undulating velocity (over one cycle) of the tail ðx ¼ LÞ is 0.785. Viscosity is
chosen such that the Reynolds number based on the peak undulating velocity and L is 5609, to match Kern and Koumoutsa-
kos [11]. It should be noted that the above coordinates x and y are with respect to the frame attached to the fish body’s main
axis. A difference between the above geometry and motion pattern and those of Kern and Koumoutsakos [11] is that they
specify both quantities as a function of the arc length parameter, s, along the centerline. We choose the projected distance
along the main axis, x, so as to keep the body motion divergence-free, which avoids additional mass sources in the domain.
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t �z

ab

c

d

e

Fig. l
Two-dimensionalmotionoftheeel.(a)Trajectoryofthemid-pointofthemainaxisinlabframe.(b)Temporalevolutionofthemainaxisinlab

frame.Axesnottoscale.(c)Velocityofthecenterofmassintheeell.sasymptoticframeofreference.Upper:Streamwisevelocity;lower:lateralvelocity.„:

Presentstudy;---:KernandKoumoutsakos[11]

.(d)Forcesonthebodyintheeell.sasymptoticframeofreference.„:Streamwiseforce;---:lateralforce


(e)Angularvelocityinthelabframe.

 2 4A.A.Shirgaonkaretal./JournalofComputationalPhysics228(2009)23 6…2390
For the current slender motion pattern, the lateral displacement of the body from the axis is small compared to the body
length. The domain size was 8L� 3L with a uniform grid. The initial position of the organism’s midline is
yðx;0Þ ¼ 0:125
xþ 0:03125

1:03125
sinð2pxÞ; ð4:9Þ
which is arbitrarily chosen to have zero phase. Time, distance and velocity are normalized by, respectively, T; L and the
velocity scale U ¼ 1 which is a consequence of Eq. (4.8). A grid convergence study was done with four different grids:
1280� 448; 1600� 576; 1920� 704, and 2304� 832. It was seen that the relative change in mean swimming velocity
of the eel between two successive grid refinements fell below 3% for the last stage of grid refinement. We choose the nominal
grid with 1920� 704 points for simulations reported here. A wider domain in the y direction was tried to study the sensi-
tivity to the periodic boundary conditions, giving almost identical results. At t ¼ 0 the flow field is taken as quiescent. Hence
there is a transient after which the flow field around the eel reaches its asymptotic structure. During the transient, the mo-
ments and forces are not balanced, hence the eel experiences translational and rotational acceleration, manifested as a turn
in Fig. 10(a). A quasi-steady state is reached when forces and velocities acquire a constant amplitude with zero mean
(Fig. 10(d) and (c)), and the eel’s time-averaged trajectory becomes rectilinear. Then the thrust and the drag on the animal
balance each other over one complete cycle. The rocking motion pattern (Fig. 10(a)) of the main axis exhibits a quasi-steady
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behavior. The angular velocity corresponding to the rigid body component ur attains a constant amplitude and zero mean
(Fig. 10(e)).

The free-swimming velocities show reasonable agreement with the results of Kern and Koumoutsakos [11] (Fig. 10(c)).
The slight difference is likely due to the difference between the two deformation patterns. We specify the lateral deformation
of the eel in the fixed frame attached to the eel to maintain the overall volume of the body constant, whereas they define it as
a function of the body length coordinate. The angle of the asymptotic averaged velocity in this case was found to be 5� with
respect to the horizontal direction. As seen from Fig. 11, vorticity is generated over the surface of the body and is then shed at
the tail into a reverse Kármán vortex street containing downstream-directed momentum. Each pair of counter-rotating vor-
tices carries with it an impulse in the direction opposite to that of swimming. This demonstrates the central theme of our
algorithm – momentum redistribution – where free-swimming is a process in which the body motion imparts a negative
momentum to the surrounding fluid, while itself gaining positive total momentum causing propulsion.

The two main features of eel swimming highlighted by Tytell and Lauder [10] are evident in the velocity field in Fig. 12.
They are the swirling flow very close to the body on both lateral sides due to the curvature of the body, and the lateral jets
generated downstream, each of which lies between a pair of counter-rotating vortices.

We also performed a three-dimensional eel simulation to qualitatively demonstrate that the numerical method repro-
duces the 3D vorticity structure predicted by the body-fitted finite difference simulation of Kern and Koumoutsakos [11]
(Fig. 13). This structure containing alternate vortex rings in a V-pattern is also observed in the simulations of low aspect ratio
airfoils by Dong et al. [75]. The imposed flow in their case replicates the effect that the self-propulsion velocity has on down-
stream vortex convection in our case. Hence the two cases produce a similar pattern of vortex rings.

4.5. Free-swimming body with a propelling membrane

A combination of rigid body and flexible membrane occurs in fishes with fins if we neglect the body deformations to the
first order. The propulsive force is generated by the undulating motion of one or more fins attached to the fish body, such as
pectoral, dorsal, caudal or anal fins. In this section we consider this case to qualitatively demonstrate the capability of the
code. As a model problem we consider Apteronotus albifrons, the weakly electric black ghost knifefish, which is known for
its high maneuverability and swimming without trunk deformations [76]. The simulations are done with a grid size such
that the key flow features are resolved. A quantitative investigation is not intended here and will form the basis of a separate
study. As a first step, we have recently published a detailed quantitative investigation focused on ribbon fins in knifefish un-
der impulsive conditions (undulating but without translation) in Shirgaonkar et al. [68].

The three-dimensional CAD geometry representative of an adult Apteronotus albifrons (Fig. 14(a)) is taken from an accu-
rate cast of the fish made by MacIver and Nelson [20] (Fig. 14(b)). The fish body length L, defined as the distance from the
nose to the tail end (shown by circles in Fig. 14(b)), is 10 cm. The anal fin begins at a distance 0.1L downstream of the nose,
tapers up, and then gradually reduces to zero thickness near the tail. The anal fin is also called a ‘‘ribbon fin” because of its
geometry.

The fin motion is specified as a sinusoidal wave with frequency f ¼ 2 Hz, angular amplitude hmax ¼ 30�, and wavelength
k ¼ L=2. The angular displacement of any point on the fin is defined with respect to the midsagittal plane of the fish and
Fig. 11. Vorticity contours for a self-propelling eel. The eel swimming angle is 5� with respect to x axis.



Fig. 12. Instantaneous velocity field for the eel showing vortices close to the body and also the lateral jets downstream of the tail.

Fig. 13. Isosurfaces of vorticity magnitude 4.5 for a three-dimensional eel. The eel body is shown in dark gray.
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about the axis of rotation of the fin. The midsagittal plane passes through the fish nose and tail, and at t ¼ 0 it is parallel to
the x—y plane (Fig. 14(b)), but subsequently moves according to the rigid body component of the fish motion. The axis of
rotation is the line joining the horizontal extrema of the boundary between the body and the fin, and is shown by a dashed
line in Fig. 14(b). Note that the tail of the fish (shown by the thick dot in Fig. 14(b)) does not lie on the axis of rotation, be-
cause the fin ends at a short distance before the tail. The initial fluid velocity is zero everywhere. The angular displacement is
given by
Fig. 14.
geomet
h ¼ hmax sinðkx�xtÞ; ð4:10Þ
where k ¼ 2p=k is the wavenumber and x ¼ 2pf is the angular frequency. The phase velocity is therefore Up ¼ x=k ¼ fk.
Thus, the fin excitation is a traveling wave sent along the length of the fin in the downstream direction. A domain size of
3L� L� 0:5L is used with a 576� 192� 96 grid. Here we present the results for swimming velocities and forces, and also
the three-dimensional flow field around the fish body. Fig. 15 shows the development of the swimming velocities during
the transient behavior of the fish. Time, distance, velocities and forces are non-dimensionalized by L=Up; L; Up, and
qU2

pL2, respectively. The swimming velocity rises to about 14% of the phase velocity and begins to stabilize. The pitch angle
of the velocity vector with respect to the horizontal is estimated from the projected quasi-steady state mean velocities of
U ¼ 0:15 and V ¼ 0:02 is 7.5�, which lies in the observed range of pitch angles for black ghost knifefish when it is not search-
(a) Apteronotus albifrons, the weakly electric black ghost knifefish. Photograph courtesy of Neil Hepworth, Practical Fishkeeping Magazine. (b) The 3D
ric model used in the simulations. The thick dots indicate the nose and the tail. The dashed line is the axis of rotation.
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The approach presented in this paper is novel for two reasons: first, we have proposed a new constraint-based formula-
tion for the problem of self-propulsion with specified deformation kinematics (Section 2). Second, we have proposed an effi-
cient algorithm, which we call the Fully Resolved Momentum Redistribution for self-Propulsion (FuRMoRP) algorithm, to
numerically solve these equations (Section 3).

In the new formulation it is assumed that the entire domain is a fluid. It is ensured that the ‘fluid’ occupying the domain of
the swimming body moves according to the specified deformation kinematics by imposing a constraint based on those kine-
matics. The unknown pertaining to the body motion is the non-deforming component of its motion which is the swimming
velocity. An application of variational principles shows that the constraint leads to a Lagrange multiplier stress field in the
body domain similar to how there is pressure in an incompressible fluid. A coupled solution in the fluid–body domains gives
the swimming velocity of the body and the velocity field of the fluid. This constraint-based formulation gives a new set of
governing equations for the problem of self-propulsion analogous to how distributed Lagrange multiplier methods (DLM)
were developed for freely moving rigid particle flows [30,32]. It is known from DLM techniques for rigid particulate flows
that such formulations provide a formal basis for the development of fictitious domain or immersed boundary type numer-
ical techniques. Our formulation provides such a basis for the self-propulsion problem.

The new FuRMoRP algorithm shows how the constraint for the self-propulsion problem can be efficiently implemented
analogous to how the incompressibility constraint is imposed in Chorin-type pressure correction based fractional time step-
ping schemes [77]. It is different from prior immersed boundary method-based algorithms for fish swimming [24,25] be-
cause FuRMoRP does not need the specification of the entire velocity field in the domain of the swimming body but
allows for six degrees of freedom to determine the swimming velocity of that body. There is no need to solve additional
equations of motion for the swimming body. The analogy with Chorin-type schemes also implies that FuRMoRP lays the
foundation to develop higher order accurate time stepping schemes similar to how the first order pressure correction
scheme of Chorin [77] was improved.

The momentum redistribution concept in the FuRMoRP algorithm, which is used to compute the swimming velocity of
the body, results from the discrete implementation of the constraint-based formulation of the problem of self-propulsion.
This allows for the fluid–body interaction forces to be computed implicitly, rather than explicit computation of forces which
is more susceptible to numerical instability. The momentum redistribution approach is also computationally very efficient.

The constraint-based formulation and the FuRMoRP algorithm provide a rigorous basis for an immersed boundary imple-
mentation of the problem of self-propulsion. The algorithm can also be implemented by a body-fitted mesh technique. In this
work an immersed boundary implementation was used because it results in a powerful technique that can be easily applied
to a variety of fish morphologies and swimming styles, and potentially also to flying organisms. The immersed boundary
implementation eliminates the need for expensive grid regeneration required by body-fitted meshes. Furthermore, handling
arbitrary body shapes and multibody configurations is relatively easy.

We have illustrated the applications of our approach to simple and complex body shapes in one, two, and three dimen-
sions, for rigid and flexible bodies as well as their combinations. We demonstrated that the computational time required for
the solid body computation is only a small fraction of the total flow solver.

We also derived vorticity transport equations based on our new constraint-based formulation of the self-propulsion prob-
lem. In the discrete system, the formulation was shown to give rise to a vorticity source at the solid–fluid interface which is
fundamentally similar to the vorticity source at a boundary in vortex methods.

The formulation does not depend on the constitutive relation of the fluid, and can potentially be applied to turbulent
flows using direct numerical simulations (DNS) or large eddy simulations (LES). Finally, the algorithm by itself is indepen-
dent of the flow solver, is designed to be modular and parallelizable, and can be coupled to various flow solvers to tackle low
to high Reynolds number flows. FuRMoRP can be a powerful tool to predict fluid dynamics for biological organisms, under-
water vehicle design, physiological fluid dynamics, and integrative neuromechanical modeling.
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